3.163 \(\int \frac{\tan (d (a+b \log (c x^n)))}{x^2} \, dx\)

Optimal. Leaf size=71 \[ \frac{i}{x}-\frac{2 i \text{Hypergeometric2F1}\left (1,\frac{i}{2 b d n},1+\frac{i}{2 b d n},-e^{2 i a d} \left (c x^n\right )^{2 i b d}\right )}{x} \]

[Out]

I/x - ((2*I)*Hypergeometric2F1[1, (I/2)/(b*d*n), 1 + (I/2)/(b*d*n), -(E^((2*I)*a*d)*(c*x^n)^((2*I)*b*d))])/x

________________________________________________________________________________________

Rubi [F]  time = 0.0308557, antiderivative size = 0, normalized size of antiderivative = 0., number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0., Rules used = {} \[ \int \frac{\tan \left (d \left (a+b \log \left (c x^n\right )\right )\right )}{x^2} \, dx \]

Verification is Not applicable to the result.

[In]

Int[Tan[d*(a + b*Log[c*x^n])]/x^2,x]

[Out]

Defer[Int][Tan[d*(a + b*Log[c*x^n])]/x^2, x]

Rubi steps

\begin{align*} \int \frac{\tan \left (d \left (a+b \log \left (c x^n\right )\right )\right )}{x^2} \, dx &=\int \frac{\tan \left (d \left (a+b \log \left (c x^n\right )\right )\right )}{x^2} \, dx\\ \end{align*}

Mathematica [B]  time = 4.03371, size = 153, normalized size = 2.15 \[ \frac{(1-2 i b d n) \text{Hypergeometric2F1}\left (1,\frac{i}{2 b d n},1+\frac{i}{2 b d n},-e^{2 i d \left (a+b \log \left (c x^n\right )\right )}\right )-e^{2 i d \left (a+b \log \left (c x^n\right )\right )} \text{Hypergeometric2F1}\left (1,1+\frac{i}{2 b d n},2+\frac{i}{2 b d n},-e^{2 i d \left (a+b \log \left (c x^n\right )\right )}\right )}{x (2 b d n+i)} \]

Antiderivative was successfully verified.

[In]

Integrate[Tan[d*(a + b*Log[c*x^n])]/x^2,x]

[Out]

(-(E^((2*I)*d*(a + b*Log[c*x^n]))*Hypergeometric2F1[1, 1 + (I/2)/(b*d*n), 2 + (I/2)/(b*d*n), -E^((2*I)*d*(a +
b*Log[c*x^n]))]) + (1 - (2*I)*b*d*n)*Hypergeometric2F1[1, (I/2)/(b*d*n), 1 + (I/2)/(b*d*n), -E^((2*I)*d*(a + b
*Log[c*x^n]))])/((I + 2*b*d*n)*x)

________________________________________________________________________________________

Maple [F]  time = 1.364, size = 0, normalized size = 0. \begin{align*} \int{\frac{\tan \left ( d \left ( a+b\ln \left ( c{x}^{n} \right ) \right ) \right ) }{{x}^{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d*(a+b*ln(c*x^n)))/x^2,x)

[Out]

int(tan(d*(a+b*ln(c*x^n)))/x^2,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\tan \left ({\left (b \log \left (c x^{n}\right ) + a\right )} d\right )}{x^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*(a+b*log(c*x^n)))/x^2,x, algorithm="maxima")

[Out]

integrate(tan((b*log(c*x^n) + a)*d)/x^2, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\tan \left (b d \log \left (c x^{n}\right ) + a d\right )}{x^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*(a+b*log(c*x^n)))/x^2,x, algorithm="fricas")

[Out]

integral(tan(b*d*log(c*x^n) + a*d)/x^2, x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\tan{\left (a d + b d \log{\left (c x^{n} \right )} \right )}}{x^{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*(a+b*ln(c*x**n)))/x**2,x)

[Out]

Integral(tan(a*d + b*d*log(c*x**n))/x**2, x)

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*(a+b*log(c*x^n)))/x^2,x, algorithm="giac")

[Out]

Timed out